

## Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6684/01)

https://xtremepape.rs/

## January 2008 Statistics S2 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                     | Marks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. (a)             | A census is when every member of the population is investigated.                                                                                                           | B1    |
| (b)                | There would be no cookers left to sell.                                                                                                                                    | B1    |
| (c)                | A list of the unique identification numbers of the cookers.                                                                                                                | B1    |
| (d)                | A cooker                                                                                                                                                                   | B1    |
|                    |                                                                                                                                                                            | (4)   |
| Notes<br>1. (a)    | <ul> <li>B1 Need one word from each group</li> <li>(1) Every member /all items / entire /oe</li> <li>(2) population/collection of individuals/sampling frame/oe</li> </ul> |       |
|                    | enumerating the population on its own gets B0                                                                                                                              |       |
| (b)                | B1 Idea of Tests to destruction. Do not accept cheap or quick                                                                                                              |       |
| (c)                | B1 Idea of list/ register/database of cookers/serial numbers                                                                                                               |       |
| (d)                | <b>B1</b> cooker(s) / serial number(s)                                                                                                                                     |       |
|                    | The sample of 5 cookers or every 400 <sup>th</sup> cooker gets B1                                                                                                          |       |
|                    |                                                                                                                                                                            |       |
|                    |                                                                                                                                                                            |       |
|                    |                                                                                                                                                                            |       |
|                    |                                                                                                                                                                            |       |
|                    |                                                                                                                                                                            |       |
|                    |                                                                                                                                                                            |       |

| 2 (a)  | Let <i>X</i> be the random variable the number of faulty bolts                                                                                                                 | M1        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|        | $P(X \le 2) - P(X \le 1) = 0.0355 - 0.0076$ or $(0.3)^2 (0.7)^{18} \frac{20!}{18!2!}$                                                                                          | A1 (2)    |
|        | = 0.0279 = 0.0278                                                                                                                                                              | M1<br>A1  |
| (b)    | $1 - P(X \le 3) = 1 - 0.1071$<br>= 0.8929                                                                                                                                      | (2)       |
|        | or $1 - (0.3)^3 (0.7)^{17} \frac{20!}{17!3!} - (0.3)^2 (0.7)^{18} \frac{20!}{18!2!} - (0.3)(0.7.)^{19} \frac{20!}{19!1!} - (0.7)^{20}$                                         | M1A1√A1   |
| (c)    | $\frac{10!}{4!6!}(0.8929)^6(0.1071)^4 = 0.0140.$                                                                                                                               | (3)       |
| Notes: |                                                                                                                                                                                |           |
| 2. (a) | M1 Either<br>attempting to use P ( $X \le 2$ ) – P ( $X \le 1$ )                                                                                                               |           |
|        | or attempt to use binomial and find $p(X=2)$ . Must have $(p)^2(1-p)^{18}\frac{20!}{18!2!}$ ,                                                                                  |           |
|        | with a value of p                                                                                                                                                              |           |
|        | A1 awrt 0.0278 or 0.0279.                                                                                                                                                      |           |
| (b)    | <b>M1</b> Attempting to find $1 - P(X < 3)$                                                                                                                                    |           |
|        | <b>A1</b> awrt 0 893                                                                                                                                                           |           |
| (c)    | AT dwit 0.075                                                                                                                                                                  |           |
|        | <b>M1</b> for $k(p)^6(1-p)^4$ . They may use any value for $p$ and $k$ can be any number or ${}^{n}C_6p^6(1-p)^{n-6}$                                                          |           |
|        | A1 $\sqrt{\frac{10!}{4!6!}}$ (their part b) <sup>6</sup> (1-their part b) <sup>4</sup> may write <sup>10</sup> C <sub>6</sub> or <sup>10</sup> C <sub>4</sub><br>A1 awrt 0.014 |           |
|        |                                                                                                                                                                                | B1 B1 (2) |

| 3. (a)        | Eventsoccur at a constant rate.any two of the 3Eventsoccur independently or randomly.Eventsoccur singly.                                                                                                                                                      | B1       |     |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| (b)           | Let <i>X</i> be the random variable the number of cars passing the observation point.                                                                                                                                                                         | M1<br>A1 |     |
| (i)           | Po(6) $e^{-6}6^4$                                                                                                                                                                                                                                             | M1       |     |
|               | $P(X \le 4) - P(X \le 3) = 0.2851 - 0.1512$ or $\frac{C - 0}{4!}$<br>= 0.1339                                                                                                                                                                                 | A1       | (5) |
| (ii)          | $1 - P(X \le 4) = 1 - 0.2851$ or $1 - e^{-6} \left( \frac{6^4}{4} + \frac{6^3}{24} + \frac{6^2}{24} + \frac{6}{44} + 1 \right)$                                                                                                                               | B1       | (5) |
|               | (4!  3!  2!  1!)                                                                                                                                                                                                                                              | M1 A1    |     |
| (c)           | P (0 car and 1 others) + P (1 cars and 0 other)                                                                                                                                                                                                               | A1       | (4) |
|               | $= e^{-1} x 2e^{-2} + 1e^{-1} x e^{-2}$<br>= 0.3679 x 0.2707 + 0.3674 x 0.1353<br>= 0.0996 + 0.0498<br>= 0.149                                                                                                                                                |          |     |
|               | $\frac{\text{alternative}}{P_{o}(1+2) = P_{o}(3)} B1$ $P(X=1) = 3e^{-3} M1 A1$ $= 0.149 A1$                                                                                                                                                                   |          |     |
|               |                                                                                                                                                                                                                                                               |          |     |
| Notes<br>3(a) | <ul> <li>B1 B1 Need the word events at least once.<br/>Independently and randomly are the same reason.<br/>Award the first B1 if they only gain 1 mark</li> <li>Special case. If they have 2 of the 3 lines without the word events they get B0 B1</li> </ul> |          |     |
|               | <b>B1</b> Using Po(6) in (i) or (ii) $e^{-\lambda 2^4}$                                                                                                                                                                                                       |          |     |
| (b) (i)       | <b>M1</b> Attempting to find $P(X \le 4) - P(X \le 3)$ or $\frac{e^{-\lambda}}{4!}$                                                                                                                                                                           |          |     |

|      | A1 awrt 0.134                                                                                                                |  |
|------|------------------------------------------------------------------------------------------------------------------------------|--|
|      | <b>M1</b> Attempting to find $1 - P(X \le 4)$                                                                                |  |
|      | A1 awrt 0.715                                                                                                                |  |
| (11) |                                                                                                                              |  |
|      | <b>B1</b> Attempting to find both possibilities. May be implied by doing $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2} + $ |  |
| (c)  | $e^{-\lambda_2} \times \lambda_1 e^{-\lambda_1}$ any values of $\lambda_1$ and $\lambda_2$                                   |  |
|      | M1 finding one pair of form $e^{-\lambda_1} \times \lambda_2 e^{-\lambda_2}$ any values of $\lambda_1$ and $\lambda_2$       |  |
|      | A1 one pair correct                                                                                                          |  |
|      | A1 awrt 0.149                                                                                                                |  |
|      | Alternative.                                                                                                                 |  |
|      | B1 for Po(3)<br>M1 for attempting to find $P(Y=1)$ with Po(3)                                                                |  |
|      | A1 $3e^{-3}$                                                                                                                 |  |
|      | A1 awrt 0.149                                                                                                                |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |
|      |                                                                                                                              |  |

| 4. (a) | $K(2^{4} + 2^{2} - 2) = 1$<br>K = 1/18                                                                     | M1<br>A1 | (2) |
|--------|------------------------------------------------------------------------------------------------------------|----------|-----|
| (b)    | $1 - F(1.5) = 1 - \frac{1}{18}(1.5^4 + 1.5^2 - 2)$ 203                                                     | M1       | (2) |
| (-)    | $= 0.705 \text{ or } \frac{100}{288}$                                                                      | A1       | (2) |
| (c)    | $f(y) = \begin{cases} \frac{1}{9}(2y^3 + y) & 1 \le y \le 2 \end{cases}$                                   | M1 A1    |     |
|        | 0 otherwise                                                                                                | B1       | (3) |
| Notes  |                                                                                                            |          |     |
| 4. (a) | M1 putting $F(2) = 1$ or $F(2) - F(1) = 1$<br>A1 cso. Must show substituting $y = 2$ and the 1/18          |          |     |
| (b)    | <b>M1</b> either attempting to find $1 - F(1.5)$ may write and use $F(2) - F(1.5)$<br><b>A1</b> awrt 0.705 |          |     |
| (c)    | <b>M1</b> attempting to differentiate. Must see either a $y^n \rightarrow y^{n-1}$ at least once           |          |     |
|        | A1 for getting $\frac{1}{9}(2y^3 + y)$ o.e and $1 \le y \le 2$ allow $1 \le y \le 2$                       |          |     |
|        | <b>B1</b> for the 0 <i>otherwise</i> . Allow 0 for $y <1$ and 0 for $y >2$                                 |          |     |
|        | Allow them to use any letter                                                                               |          |     |
|        |                                                                                                            |          |     |
|        |                                                                                                            |          |     |
|        |                                                                                                            |          |     |
|        |                                                                                                            |          |     |

| 5 | $H_0: p = 0.3; H_1: p > 0.3$                                                                                                                                                                              | B1 B1          |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|   | Let X represent the number of tomatoes greater than 4 cm : $X \sim B(40, 0.3)$                                                                                                                            | B1             |
|   | $P(X \ge 18) = 1 - P(X \le 17)$ $P(X \ge 18) 1 - P(X \le 17) = 0.0320$ $P(X \ge 17) = 1 - P(X \le 16) = 0.0633$ $CR X \ge 18$                                                                             | M1<br>A1       |
|   | $0.0320 < 0.05$ $18 \ge 18$ or 18 in the critical region                                                                                                                                                  |                |
|   | no evidence to Reject $H_0$ or it is significant                                                                                                                                                          | M1             |
|   | New fertiliser has <u>increased</u> the probability of a <u>tomato</u> being greater than 4 cm<br>Or<br>Dhriti's claim is true                                                                            | B1d cao<br>(7) |
|   |                                                                                                                                                                                                           |                |
| 5 | <b>B1</b> for correct $H_0$ must use p or pi                                                                                                                                                              |                |
|   | <b>B1</b> for correct $H_1$ must use p and be one tail.                                                                                                                                                   |                |
|   | <b>B1</b> using $B(40, 0.3)$ . This may be implied by their calculation                                                                                                                                   |                |
|   | <b>M1</b> attempt to find $1 - P(X \le 17)$ or get a correct probability.<br>For CR method must attempt to find $P(X \ge 18)$ or give the correct critical region                                         |                |
|   | A1 awrt 0.032 or correct CR.                                                                                                                                                                              |                |
|   | <b>M1</b> correct statement based on their probability , $H_1$ and 0.05 or a correct contextualised statement that implies that.                                                                          |                |
|   | <b>B1</b> this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1             |                |
|   | If they do a <u>two tail test</u> they may get<br>B1 B0 B1 M1 A1 M1 B0<br>For the second M1 they must have accept Ho or it is not significant<br>or a correct contextualised statement that implies that. |                |

| 6a (i) | Let X represent the number of sunflower plants more than 1.5m high                                                                                  |             |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|        | $X \sim Po(10)$ $\mu = 10$                                                                                                                          |             |
|        | $P(8 \le X \le 13) = P(X \le 13) - P(X \le 7)$                                                                                                      |             |
|        | = 0.8645 - 0.2202                                                                                                                                   | B1          |
|        | = 0.6443 awrt 0.644                                                                                                                                 | M1          |
| ii)    | <i>X</i> ~ N(10,7.5)                                                                                                                                |             |
|        | $P(7.5 \le X \le 13.5) = P\left(\frac{7.5 - 10}{2} \le X \le \frac{13.5 - 10}{2}\right)$                                                            | A1          |
|        | $\left(\begin{array}{c} 1 \\ \sqrt{7.5} \end{array}\right) = 1 = 15.5 \right) = \left(\begin{array}{c} \sqrt{7.5} \\ \sqrt{7.5} \end{array}\right)$ | B1          |
|        | $= P (-0.913 \le X \le 1.278)$                                                                                                                      |             |
|        | = 0.8997 - (1 - 0.8186)                                                                                                                             | MI MI       |
|        | = 0.7183 awrt 0.718 or 0.719                                                                                                                        | A1 A1       |
| b)     | Normal approx /not Poisson                                                                                                                          | M1          |
|        | since (n is large) and p close to half.<br>or $(np = 10 \text{ png} = 7.5)$ mean $\neq$ variance or                                                 | A1 (10)     |
|        | np (= 10) and $nq (= 30)$ both >5.                                                                                                                  | (10)        |
|        | or exact binomial = 0.7148                                                                                                                          | B1<br>B1dep |
| 6a (i) | <b>B1</b> mean = 10 May be implied in (i) or (ii)                                                                                                   |             |
|        | <b>M1</b> Attempting to find $P(X \le 13) - P(X \le 7)$                                                                                             |             |
|        | A1 awrt 0.644                                                                                                                                       |             |
| ii)    | <b>B1</b> $\sigma^2 = 7.5$ May be implied by being correct in standardised formula                                                                  |             |
|        | <b>M1</b> using 7.5 or 8.5 or 12.5 or 13.5.                                                                                                         |             |
|        | <b>M1</b> standardising using 7.5 or 8 or 8.5 or 12.5 or 13 or 13.5 and their mean and standard deviation.                                          |             |
|        |                                                                                                                                                     |             |

|    | A1 award for either $\frac{7.5-10}{\sqrt{7.5}}$ or awrt -0.91                                                                                                                                                |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | A1 award for either $\frac{13.5-10}{\sqrt{7.5}}$ or awrt 1.28                                                                                                                                                |  |
|    | M1 Finding the correct area. Following on from their 7.5 and 13.5. Need to do a Prob $>0.5 - \text{prob} < 0.5$ or prob $<0.5 + \text{prob} < 0.5$                                                           |  |
|    | A1 awrt 0.718 or 0.719 only. Dependent on them getting all three method marks.                                                                                                                               |  |
|    | No working but correct answer will gain all the marks                                                                                                                                                        |  |
|    | first <b>B1</b> normal                                                                                                                                                                                       |  |
| b) | second <b>B1</b><br>p close to half,<br>or mean $\neq$ variance<br>or np and nq both > 5.They may use a number bigger than 5<br>or they may work out the exact value 0.7148 using the binomial distribution. |  |
|    | Do not allow np> 5 and npq>5                                                                                                                                                                                 |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |
|    |                                                                                                                                                                                                              |  |

| 7 ai)                 | A hypothesis test is a mathematical procedure to <u>examine a value of</u><br><u>a population parameter</u> proposed by <u>the null hypothesis compared</u><br>with an alternative hypothesis.                                                        | B1                   |     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
| ii)                   | The critical region is the <u>range of values</u> or <u>a test statistic or region where the test is</u><br><u>significant</u><br>that would lead <u>to the rejection of <math>H_0</math></u>                                                         | B1g<br>B1h           | (2) |
| (b)                   | Let X represent the number of incoming calls : $X \sim Po(9)$                                                                                                                                                                                         | B1                   | (3) |
|                       | From table<br>$P(X \ge 16) = 0.0220$                                                                                                                                                                                                                  | M1 A1                |     |
|                       | $P(x \le 3) = 0.0212$                                                                                                                                                                                                                                 | A1                   |     |
|                       | Critical region ( $x \le 3$ or $x \ge 16$ )                                                                                                                                                                                                           | B1                   | (5) |
| (c)                   | Significance level = 0.0220 + 0.0212<br>= 0.0432 or 4.32%                                                                                                                                                                                             | B1                   | (1) |
| (d)                   | $H_0: \lambda = 0.45; H_1: \lambda < 0.45$ (accept: $H_0: \lambda = 4.5; H_1: \lambda < 4.5$ )Using X ~ Po(4.5)P (X \le 1) = 0.0611CR $X \le 0$ awrt 0.0611                                                                                           | B1<br>M1<br>A1<br>M1 |     |
|                       | $\begin{array}{ll} 0.0611 > 0.05. & 1 \geq 0 \mbox{ or 1 not in the critical region} \\ \\ There is evidence to Accept H_0 \mbox{ or it is not significant} \\ \\ There is no evidence that there are less calls during school holidays. \end{array}$ | B1cao                | (5) |
| Notes<br>7 ai)<br>ii) | B1 Method for deciding between 2 hypothesis.<br>B1 range of values. This may be implied by other words. Not region on its own<br>B1 which lead you to reject $H_0$                                                                                    |                      |     |

|     | Give the first B1 if only one mark awarded.                                                                                                                                                    |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | B1 using P <sub>o</sub> (9)                                                                                                                                                                    |  |
| (b) | M1 attempting to find $P(X \ge 16)$ or $P(x \le 3)$                                                                                                                                            |  |
|     | A1 0.0220 or P(X $\geq$ 16)<br>A1 0.0212 or P(x $\leq$ 3)<br>These 3 marks may be gained by seeing the numbers in part c                                                                       |  |
|     | B1 correct critical region                                                                                                                                                                     |  |
|     | A completely correct critical region will get all 5 marks.<br>Half of the correct critical region eg $x \le 3$ or $x \ge 17$ say would get B1 M1 A0 A1 B0 if the M1 A1 A1 not already awarded. |  |
| (c) | B1 cao awrt 0.0432                                                                                                                                                                             |  |
| (d) | B1 may use $\lambda$ or $\mu$ . Needs both H <sub>0</sub> and H <sub>1</sub>                                                                                                                   |  |
| (u) | M1 using $P_0(4.5)$                                                                                                                                                                            |  |
|     | A1 correct probability or CR only                                                                                                                                                              |  |
|     | M1 correct statement based on their probability , $H_1$ and 0.05 or a correct contextualised statement that implies that.                                                                      |  |
|     | <b>B1</b> this is not a follow through .Conclusion in context. Must see the word <b>calls</b> in conclusion                                                                                    |  |
|     | If they get the correct CR with no evidence of using $P_0(4.5)$ they will get M0 A0                                                                                                            |  |
|     | SC If they get the critical region $X \le 1$ they score M1 for rejecting H <sub>0</sub> and B1 for concluding the rate of calls in the holiday is lower.                                       |  |
|     |                                                                                                                                                                                                |  |
|     |                                                                                                                                                                                                |  |
|     |                                                                                                                                                                                                |  |
|     |                                                                                                                                                                                                |  |

| 8. a)          | $\begin{bmatrix} 2.5 \\ 2 \\ 1.5 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$ Max height of 2 labelled and goes through(2,0) shape must be between 2 and 3 and no other lines drawn (accept patios drawn) correct shape | B1<br>B1<br>B1                |                                               |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|
| b)<br>c)<br>d) | $\int_{2}^{3} 2x(x-2) dx = \left[\frac{2x^{3}}{3} - 2x^{2}\right]_{2}^{3}$ $= 2\frac{2}{3}$ $\int_{2}^{m} 2(x-2) dx = 0.5$ $[x^{2} - 4x]_{2}^{m} = 0.5$                                                                                | B1<br>M1A1<br>A1<br>M1        | <ul><li>(3)</li><li>(1)</li><li>(3)</li></ul> |
| e)             | $m^{2}-4m+4=0.5$ $m^{2}-4m+3.5=0$ $m=\frac{4\pm\sqrt{2}}{2}$ $m=2.71$ Negative skew. mean < median < mode.                                                                                                                             | A1<br>M1<br>A1<br>B1<br>B1dep | (4)                                           |

| Notes 8. | <b>B1</b> the graph must have a maximum of 2 which must be labelled                                                                          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| (a)      | <b>B1</b> the line must be between 2 and 3 with not other line drawn except patios. They can get this mark even if the patio cannot be seen. |
|          | <b>B1</b> the line must be straight and the right shape.                                                                                     |
|          | B1 Only accept 3                                                                                                                             |
| (b)      | <b>M1</b> attempt to find $\int x f(x) dx$ for attempt we need to see $x^n \to x^{n+1}$ . ignore limits                                      |
| (c)      | A1 correct integration ignore limits                                                                                                         |
|          | A1 accept $2\frac{2}{3}$ or awrt 2.67 or 2.6                                                                                                 |
|          | M1 using $\int f(x)dx = 0.5$<br>A1 $m^2 - 4m + 4 = 0.5$ oe                                                                                   |
| (d)      | M1 attempting to solve quadratic.                                                                                                            |
|          | A1 awrt 2.71 or $\frac{4+\sqrt{2}}{2}$ or $2+\frac{\sqrt{2}}{2}$ oe                                                                          |
| (e)      | First <b>B1</b> for negative<br>Second <b>B1</b> for mean < median< mode. Need all 3 or may explain using diagram.                           |